

PBAC Consumer

Submit your comments by 20 Sept 2023

2 August 2023

CONSULTATION IS OPEN FOR THE NOVEMBER 2023 PBAC AGENDA

The agenda for the November 2023 PBAC meeting has been published and the request for Kalydeco (Ivacaftor) to be extended has been listed.

The submission for Kalydeco includes an extension of treatment access to CF patients aged 4 to 12 months and are shown to be responsive to Ivacaftor potentiation. The list of responsive mutations includes rare mutations as well as R117H and RF mutations (irrespective of the presence of an F allele).

Approximately 85 patients will gain access to a CFTR modulator for the first time.

Whilst many people will already have access to other modulators, this extension will also benefit those who may not respond well to these, as well as providing earlier access to life-changing treatment.

Consumer Comments are now being accepted by the PBAC and this is your chance to help make a difference in the lives of people living with cystic fibrosis.

Please note when providing your submission:

- Share what you know including lived experiences and be specific about symptoms, how you feel, and what your daily needs are.

- Explain the difficulties and realities of living with CF and why access is important to you.

Input can be provided via the Office of Health Technology Assessment hub at:

https://ohta-consultations.health.gov.au/ohta/pbac-nov-2023/

As part of your submission, please consider commenting on access to Trikafta, and urging Australia to align this with other countries which already have access granted to a wider range of rare gene mutations. Consumer Comments close on 20 September 2023.

PBAC Agenda

Drug Name, form(s), strength(s) and Sponsor, Submission type (Drug name, form, strength, Trade name®, Sponsor, new listing/change to listing) IVACAFTOR Granules 25 mg Granules 50 mg Granules 75 mg Tablet 150 mg Kalydeco® VERTEX PHARMACEUTICALS (AUSTRALIA) PTY. LTD. (New listing)

Drug Type and Use

regulator (CFTR) gene mutation

(What is the drug used to treat?) Cystic fibrosis (CF) with the CF transmembrane conductance

PBAC Listing/Purpose of Submission

To request a Section 100 (HSD) Authority Required (Written) listing for the treatment of CF patients aged 4 to 12 months with a gating (Class III) CFTR gene mutation; and CF patients aged 4 months or older with at least one CFTR gene mutation shown to be responsive to ivacaftor potentiation.

A120T	F311del	1148T	R75Q	S589N
A234D	F311L	1175V	R117C*	S737F
A349V	F508C	1807M	R117G	S945L*
A455E*	F508C;S1251N ⁺	11027T	R117H*	S977F*
A1067T	F1052V	11139V	RIITL	S1159F
D110E	F1074L	K1060T	R117P	S1159P
DIIOH	G178E	L206W*	R170H	S1251N
D192G	G178R*	L320V	R347H*	S1255P*
D579G*	G194R	L967S	R347L	T338I
D924N	G314E	L997F	R352Q*	T10531
D1152H*	G551D*	L1480P	R553Q	V232D
D1270N	G551S*	M152V	R668C	V5621
E56K	G576A	M952I	R792G	V754M
E193K	G970D	M952T	R933G	V1293G
E822K	G1069R	P67L*	R1070Q	W1282R
	G1244E*	Q237E	R1070W*	¥1014C
	G1249R	Q237H	R1162L	¥1032C
	G1349D*	Q359R	R1283M	
	H939R	Q1291R	S549N *	
	H1375P	R74W	S549R*	

*Clinical data exist for these mutations [see Clinical efficacy].

† Complex/compound mutations where a single allele of the CFTR gene has multiple mutations; these exist independent of the presence of mutations on the other allele.